MATH1010E University Mathematics
 Quiz 2
 Suggested Solutions

1. (a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x^{2}}{x^{2} \sin x^{2}} & =\lim _{x \rightarrow 0} \frac{2 x \sin x^{2}}{2 x \sin x^{2}+2 x^{3} \cos x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\sin x^{2}}{\sin x^{2}+x^{2} \cos x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 x \cos x^{2}}{4 x \cos x^{2}-2 x^{3} \sin x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\cos x^{2}}{2 \cos x^{2}-x^{2} \sin x^{2}} \\
& =\frac{1}{2} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow 1} x^{\frac{1}{1-x}} & =\lim _{x \rightarrow 1} e^{\frac{\ln x}{1-x}} \\
& =e^{\lim _{x \rightarrow 1} \frac{\ln x}{1-x}} \\
& =e^{\lim _{x \rightarrow 1} \frac{1 / x}{-1}} \\
& =e^{-1} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right) & =\lim _{x \rightarrow 1} \frac{(x-1)-\ln x}{(x-1) \ln x} \\
& =\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{\ln x+\frac{x-1}{x}} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{x \ln x+(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\ln x+1+1} \\
& =\frac{1}{2} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\sin x} & =\lim _{x \rightarrow 0}\left(\frac{x}{\sin x} \cdot x \sin \frac{1}{x}\right) \\
& =\left(\lim _{x \rightarrow 0} \frac{x}{\sin x}\right) \cdot\left(\lim _{x \rightarrow 0} x \sin \frac{1}{x}\right) \\
& =1 \cdot 0=0 .
\end{aligned}
$$

2. (a) Differentiating gives

$$
f^{\prime}(x)=e^{-x}\left(1-x^{2}\right)
$$

Set $f^{\prime}(x)=0$, we obtain the critical point $x= \pm 1$. Computing the second derivative,

$$
f^{\prime \prime}(x)=e^{-x}\left(x^{2}-2 x-1\right)
$$

Using the second derivative test, $x=1$ is a local maximum since $f^{\prime \prime}(1)=$ $e^{-1}(-2)<0$, and $x=-1$ is a local minimum since $f^{\prime \prime}(-1)=2 e>0$.
(b) Note that $f(0)=1$ and

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}(x+1)^{2} e^{-x}=0
$$

and we have only one critical point $x=1$ in the interval $[0,+\infty)$, with $f(1)=$ $4 e^{-1}>1$. Therefore, the minimum does not exist and the maximum is $4 e^{-1}$ located at $x=1$.
3. Without loss of generality, we can assume $x>y$. By mean value theorem, there exists $\xi \in(y, x)$ such that

$$
\sin x-\sin y=(\cos \xi)(x-y)
$$

Since $|\cos \xi| \leq 1$, we conclude that $|\sin x-\sin y| \leq|x-y|$.
4. Implicitly differentiating the equation gives

$$
2 x+2 y+2 x y^{\prime}-2 y y^{\prime}=2,
$$

which we can solve for y^{\prime} to get

$$
\begin{equation*}
y^{\prime}=\frac{1-x-y}{x-y} \tag{1}
\end{equation*}
$$

At $(2,0)$, we have

$$
y^{\prime}=\frac{1-2-0}{2-0}=-\frac{1}{2} .
$$

Differentiating (1), we obtain

$$
y^{\prime \prime}=\frac{(x-y)\left(-1-y^{\prime}\right)-(1-x-y)\left(1-y^{\prime}\right)}{(x-y)^{2}} .
$$

Evaluate at $(0,2)$, we get

$$
y^{\prime \prime}=\frac{2\left(-1+\frac{1}{2}\right)-(1-2)\left(1+\frac{1}{2}\right)}{4}=\frac{1}{8}
$$

- End of Solutions to Quiz 2 -

